B
Ben_Sinner
Guest
Some people reject the Law of Non-Contradiction that a thing can either be true or false, nothing in between.
Instead they believe in a system where there are 4 possibilities.
aeon.co/essays/the-logic-of-buddhist-philosophy-goes-beyond-simple-truth
At the core of the explanation, one has to grasp a very basic mathematical distinction. I speak of the difference between a relation and a function. A relation is something that relates a certain kind of object to some number of others (zero, one, two, etc). A function, on the other hand, is a special kind of relation that links each such object to exactly one thing. Suppose we are talking about people. Mother of and father of are functions, because every person has exactly one (biological) mother and exactly one father. But son of and daughter of are relations.
Now, in logic, one is generally interested in whether a given claim is true or false. Logicians call true and false truth values. Normally, and following Aristotle, it is assumed that ‘value of’ is a function: the value of any given assertion is exactly one of true (or T), and false (or F). In this way, the principles of excluded middle (PEM) and non-contradiction (PNC) are built into the mathematics from the start. But they needn’t be.
To get back to something that the Buddha might recognise, all we need to do is make value of into a relation instead of a function. Thus T might be a value of a sentence, as can F, both, or neither.
Instead they believe in a system where there are 4 possibilities.
- True
- False
- Both True and False
- Neither True or False.
aeon.co/essays/the-logic-of-buddhist-philosophy-goes-beyond-simple-truth
At the core of the explanation, one has to grasp a very basic mathematical distinction. I speak of the difference between a relation and a function. A relation is something that relates a certain kind of object to some number of others (zero, one, two, etc). A function, on the other hand, is a special kind of relation that links each such object to exactly one thing. Suppose we are talking about people. Mother of and father of are functions, because every person has exactly one (biological) mother and exactly one father. But son of and daughter of are relations.
Now, in logic, one is generally interested in whether a given claim is true or false. Logicians call true and false truth values. Normally, and following Aristotle, it is assumed that ‘value of’ is a function: the value of any given assertion is exactly one of true (or T), and false (or F). In this way, the principles of excluded middle (PEM) and non-contradiction (PNC) are built into the mathematics from the start. But they needn’t be.
To get back to something that the Buddha might recognise, all we need to do is make value of into a relation instead of a function. Thus T might be a value of a sentence, as can F, both, or neither.